Berichten

Jupiter en de Zon waarnemen met een kortegolf radio

Auteur(s): Simon Bijlsma

Foto(s): CAMRAS Harry Keizer

Om eenvoudig de Zon en Jupiter te kunnen waarnemen heeft NASA een project genaamd ‘Radio JOVE‘. Voor dat project verkoopt NASA een bouwpakket voor een ontvanger en de antennes. De bedoeling van het project is dat bijvoorbeeld scholen heel laagdrempelig zelf radioastronomie kunnen bedrijven.

De antenne voor de Zon is een enkele afgestemde halve golf dipool. Voor het waarnemen van Jupiter en de maan Io is een enkele dipool eigenlijk niet gevoelig genoeg daarom wordt een richtantenne aangeraden. Dit is eenvoudig te realiseren met een gecombineerde opstelling waarin twee dipool-antennes samen gekoppeld worden met twee coaxkabels die elektrisch gezien exact een golflengte lang zijn.  Via het afwisselend tussenkoppelen van een extra 135 graden of 90 graden fase vertragingskabeltje worden de antennes elektrisch gezien in de richting en hoogte verstelbaar gemaakt. Ook de fysieke masthoogte wordt zo nodig aangepast, waardoor het rendement van de antenne ruim verdubbelt ten opzichte van een enkele dipool. Voor de Jupiter-waarnemingen wordt de laatste antenne aanbevolen.

Radio JOVE bij CAMRAS

De CAMRAS vrijwilligers Erik van der Toom en Simon Bijlsma hebben in 2016 bedacht dat het interessant is om een soortgelijke Radio JOVE opstelling te bouwen. Tijdens de sterrenkijkdagen stellen we  optische kijkers op, om naar Jupiter te kijken. Het zou dan heel interessant zijn om tegelijkertijd te kunnen luisteren naar de radiosignalen. Zo kunnen we het publiek een kijkje te geven in de fascinerende wereld van de (radio)astronomie. Het is een mooie demonstratie van wat er zoal mogelijk is met heel  eenvoudige middelen. De antennes zijn gemaakt van standaard materialen uit de bouwmarkt, de ontvanger is een zogenaamde RTL-SDR dongle met een zogenaamde up-converter om de lage kortegolffrequenties hoorbaar te kunnen maken. Een willekeurige AM kortegolfontvanger waarvan de AGC (automatische sterkte regeling) uitgeschakeld kan worden voldoet ook.

Antenne opstelling

Voor het project van NASA worden bouwpakketten verkocht waarin de onderdelen aanwezig zijn om zelf een ontvanger te bouwen en de bedrading voor de dipool antennes inclusief de coaxkabels. Dit bouwpakket is erg handig voor degenen die niet zoveel ervaring hebben met antennes bouwen, omdat alle benodigdheden (excl. de masten) geleverd worden. Het concept is echter zo laagdrempelig dat het eenvoudig met spullen uit de lokale bouwmarkt nagemaakt kan worden en dat hebben we bij CAMRAS gedaan. De masten waar de antennes tussen worden opgehangen bestaan in ons geval uit glasfiber delen van 1,30 meter lang, die in elkaar gestoken worden tot de gewenste hoogte. Het leger gebruikte deze masten voor camouflage netten. Ook hier geldt weer dat in principe iedere willekeurige mast van voldoende hoogte gebruikt kan worden. NASA adviseert de antennes op 4,57 meter (15 ft) hoogte te hangen om een voor onze breedte graad gunstige elevatiehoek te hebben van ongeveer 40 graden. Onze opstelling is 4,90 meter hoog doordat van genoemde vier mastdelen drie elk 10 cm in elkaar steken.

Wanneer is Jupiter te horen

De declinatie van Jupiter varieert van 23,5 graden zuid tot 23,5 graden noord gedurende een 12-jarige cyclus, waarbij de ene periode waarnemers op het noordelijke halfrond in het voordeel zijn en de andere periode waarnemers op het zuidelijke halfrond. De afstand tussen de Aarde en Jupiter varieert ook met de tijd omdat de omloopbanen van beide planeten elliptisch zijn. Gelukkig is in 2016 de declinatie van Jupiter nog net gunstig genoeg voor ons halfrond. Bovendien staat Jupiter op 8 maart het dichtste bij de aarde. Als de ionosfeer ‘s avonds rustig is, waardoor de signalen van rond 20 MHz niet terug de ruimte in gereflecteerd worden, dan moet het mogelijk zijn Jupiter met onze antennes te ontvangen.

De signalen worden onderverdeeld in zogenaamde: S-Bursts en L-Bursts. Hierbij staat de S voor ‘short’ en L voor ‘long’. De eerste klinken als een soort kraken, de laatste kunnen worden vergeleken met het geluid van de branding.

Resultaten

Op zaterdag 12 maart 2016 tijdens de landelijke sterrenkijkdagen hebben we bovengenoemde configuratie opgesteld en uitgetest. Overdag was de ionosfeer zoals verwacht actief en konden zendamateurs uit de hele wereld worden ontvangen rond 21 MHz. Vanaf ’s avonds acht uur werden de eerste ‘S Bursts’ signalen van Jupiter ontvangen, terwijl de planeet toen nog laag aan de hemel stond en bovendien een eindje uit de voorkeurs richting van de antenne, die voornamelijk naar het zuiden richtte. Later in de avond was Jupiter hoger aan de hemel en ook meer naar het zuiden gedraaid en daardoor vol in de bundel van de antenne. Achteraf gezien hadden we beter de antenne wat meer richting het oosten kunnen opstellen om eerder in de avond, toen er meer bezoekers waren, wat betere ontvangstresultaten te hebben. De reden dat we dat niet hadden gedaan was dat de DT in die richting in de weg stond en ik persoonlijk ook niet had verwacht bij de lagere elevaties überhaupt iets te kunnen horen.

Desalniettemin was het ook eerder in de avond hoorbaar en ook toen het signaal later sterker was moest er bovendien nog steeds aan het publiek worden uitgelegd wat er te horen was. De signalen waren niet erg sterk en de amplitude verschillen ook niet zo groot, zodat mensen die niet zo bekend zijn met het luisteren op de kortegolf wellicht in bijna alle gevallen slechts ‘ruis’ hoorden.  Daarom heb ik regelmatig korte tijd het verschil laten horen tussen de ruis op de waarneem frequentie 20,1 MHz en de veel vlakkere en zachtere ruis op 30 MHz waar Jupiter niet te horen was. Dit kon de meesten overtuigen, zo leek het in ieder geval. Van de waarneming heb ik meerdere audio opnames gemaakt die het programma GQRX in wav formaat opslaat.

Bij een volgende keer zou het mogelijk grafisch nog duidelijker en beter kunnen door het programma SpectrumLab te gebruiken op een Windows laptop. Het door mij gebruikte programma GQRX heeft wel een ‘waterval display’ maar toch wat minder geavanceerd als die van SpectrumLab.

Simon demonstreert de synchrotronopstelling

Simon demonstreert de Jupiter synchrotron en Meteor scatter opstelling

 

 

 

Pulsarwaarneming met een eigen RTL-dongle

Auteur(s): Michiel Klaassen

Fotos/afbeeldingen: CAMRAS Michiel Klaassen

Op woensdag 13 januari heb ik geprobeerd met de Dwingeloo Radiotelescoop het signaal van een aantal pulsars op te vangen met een RTL-dongle. Als eerste heeft Paul Boven de schotel op pulsar PSR B0329+54 in het sterrenbeeld Giraffe gericht. Daarna heb ik het programma SDR# van SHARP gestart om een RFI stille band te vinden, bijvoorbeeld op 419 MHz (figuur 1).

Figuur 1 – SDR# van SHARP

Vervolgens heb ik SDR# afgesloten en het rtl_sdr.exe programma van Osmocom geopend. Na het starten van de meting met de juiste commando’s worden de data direct naar de harde schijf van mijn laptop geschreven. Mijn doel was een aantal opnames te maken en die thuis te analyseren om te zien of de pulsar te detecteren is met de dongle en hoe smal de bandbreedte kan zijn om nog succes te hebben. Hiervoor is de bandbreedte van de meting (in Herz = identiek aan de samplingfrequentie in Samples/second) ingesteld op oplopend 100 kHz (100 kS/s), 200 kHz, 500 kHz, 1 MHz en 2 MHz. Elke meting duurde 2 minuten.

Naast PSR B0329+54 stonden ook de pulsars PSR B0531+21 (de pulsar in de Krabnevel), PSR B2154+40 en PSR B2217+47 op mijn waarneemlijst. Deze pulsars zijn opeenvolgend zwakker, hebben een bredere puls of hebben meer dispersie.

Maar na de eerste serie metingen van PSR B0329+54 hoorden we een vreemd geluid vanuit de machinekamer: er bleek dat een verzonken bout op de kopse kant van de as waar de slinger voor de handbediening zit zich had losgedraaid. Hierdoor hebben we de waarneemsessie moeten beëindigen.

De 2 MHz (2 MS/s) meting

Na analyse thuis bleek dat de weggeschreven data goed was en kon ik de volgende plaatjes maken met mijn eigen Python analyseprogramma dat het signaal opknipt in stukjes van een periode zodat je alle periodes bij elkaar op kan tellen. Als je de pulsperiode ongeveer weet, bijvoorbeeld 0,71 seconde (figuur 2a), dan krijg je een bepaald resultaat. Een ander resultaat krijg je met 0,72 seconde (figuur 2b). Het beste resultaat krijg je met vouwen met 0.714642471414 seconde (figuur 2c).

071s

Figuur 2a – 0,71 seconde

072s

Figuur 2b – 0,72 seconde

0714642471414s

Figuur 2c – 0,714642471414 seconde

optimal folding -18bins

Figuur 2d

Je kan dit zelf berekenen/benaderen door een programma te maken dat de beste signaal ruis verhouding berekent en in een grafiek uitzet (figuur 2d). Je kan ook het programma TEMPO gebruiken dat mede is geschreven door Joe Taylor (Nobelprijswinnaar, astronoom en radioamateur) die de Dwingeloo Radiotelescoop na de restauratie in 2014 heropende.

In figuur 2c staan de pulsen boven elkaar en kunnen ze opgeteld worden. Het resultaat staat in figuur 3a. De groene grafiek is gemaakt door alle lijnen bij elkaar op te tellen en de blauwe is gemaakt door alleen de lijnen met een puls bij elkaar op te tellen. Je kunt inderdaad in figuur 2c zien dat er een aantal periodes zijn die geen puls of een kleine puls bevatten. Dit komt door het scintillatie-effect, een effect dat lijkt het twinkelen van sterren. Dit radio-twinkelen ontstaat niet in de aardse atmosfeer maar wordt veroorzaakt door beweging van vrije elektronen in de interstellaire ruimte.

sum all-selected detail1

Figuur 3a – bandbreedte meting 2 MHz

dispersion2

Figuur 3b – bandbreedte 2 MHz gesplitst in 10 banden van 200 kHz

Het uiteindelijke plaatje lijkt nu compleet, maar dat is het nog niet. De grafiek blijkt nog steeds te breed. Dat komt doordat we bij de meting in een band van 2 MHz alle signalen bij elkaar opgeteld hebben. Als we de bandbreedte van de meting van 2 MHz opdelen in banden van elk 200 kHz en die onder elkaar zetten, zien we dat de pulsen niet op hetzelfde moment aankomen (figuur 3b). Een enkele puls bij 2 MHz bandbreedte was al zwak en door het opdelen in banden van 200 kHz wordt de puls nog zwakker, maar duidelijk is te zien dat de puls verschoven is in tijd. De hogere frequenties komen eerder aan dan de lage frequenties. Dit wordt dispersie genoemd; en dit wordt veroorzaakt door de vrije elektronen in de inter stellaire ruimte. Hoe meer elektronen er tussen pulsar en aarde zijn hoe meer vertraging. In dit geval blijkt de vertraging tussen het bovenste rode kanaal (419,9 MHz) in figuur 3b en het groene kanaal (418,3 MHz) 4,4 milliseconde te zijn. Op het onderste blauwe kanaal is geen puls zichtbaar. De lichtblauwe lijn onderaan in figuur 3b is de som van de 10 banden.

In de astronomie wordt de dispersie uitgedrukt in de dispersiemaat DM. In formule:

DM = K times frac{ triangle t}{ frac{1}{ f_{2} ^{2} } - frac{1}{ f_{1} ^{2} } }K = een constante
Δt = gemeten vertraging
f2 = laagste en f1 = hoogste frequentie waartussen de vertraging is gemeten

Voor deze meting komen we op DM = 24,4. In de literatuur vinden we 26,6 dus dit is een mooi resultaat voor een meting met een dongle.

Ik ben nog bezig om mijn programma dat de vorm van de puls berekent en tekent aan te passen zodat er voor de dispersie en de vertraging wordt gecorrigeerd.

Uit de pulsar periode kunnen we ook de diameter van de neutronenster berekenen en uit de dispersiemaat de afstand.

Het signaal bij een bandbreedte van 2 MHz lijkt zo goed dat je het wellicht ook direct met SDR# kan horen; ik heb dat nog niet geprobeerd.

De 100 kHz (100 kS/s) meting

Het blijkt moeilijk om bij 100 kS/s ofwel 100 kHz de pulsar nog te zien in de ruis (figuur 4a, kijk goed rechts van het midden) maar wellicht is mijn analyseprogramma niet goed genoeg. Als anderen een beter alternatief hebben dan hoor ik dat graag. Ik ben nog bezig om de individuele pulsen zo uit te lijnen dat ze netjes kunnen worden opgeteld en zo een beter resultaat geven. Dat blijkt lastig.

100b overview

Figuur 4a

100b select-normal

Figuur 4b

Je kan wel weer mooi zien dat niet elke puls aankomt, sommige lijnen vertonen geen puls. Als je toch alle pulsen zonder meer zou optellen dan werken die platte lijnen niet effectief mee aan de reconstructie.

Hier is de blauwe grafiek het resultaat van de optelling van alle lijnen en de groene grafiek de optelling van alleen lijnen die een puls bevatten. Ook hier zie je weer de pre- en de post burst om de hoofd puls heen. Er zijn diverse theorieën over, bijvoorbeeld een ring in ring kegel vanaf de pulsar. Zoek zelf maar eens op het web naar de laatste stand van zaken en de overeenstemmingen daarover in de wetenschappelijke literatuur.

De RTL-dongle

DSC01206-dongle

Figuur 5 – RTL-dongle met koelblok

Dit is de dongle, aan de soldeerzijde vlak geschuurd naar een idee van CAMRAS-er Hans Smit en geklemd op een omgekeerd koelblok uit een PC. Zo wordt de temperatuur drift (in gain en frequentie) zo veel mogelijk vermeden. Voor RFI vermindering heb ik nog een ferrietblok om de USB kabel geklikt.

 

Zelf meten en/of zelf rekenen

  1. Lees ook dit bericht groups.google.com/forum/#!topic/camras-forum/FSm7sBnChn4 op het CAMRAS-forum met de precieze gegevens wat te downloaden.
  2. Zelf meten gaat eenvoudiger door te werken met een commando. Daarvoor kan je een .bat file gebruiken bijvoorbeeld rtl_sdr -s 2e6 -f 419.0e6 -n 2e8 dump2000a.bin. De naam van de file is het commando, deze betekent: een samplingfrequentie van 2 MB/s op 419MHz, totaal 2M samples en noem de data file dump2000a.bin. Deze file is hier te downloaden www.parac.eu/downloads.htm.
  3. Als je het eerdergenoemde programma TEMPO wilt gebruiken kan je dat downloaden bij www.k5so.com/Pulsars_2015.htm (maar zie tijdelijke opmerking bij downloadpagina van K5SO).
  4. Wie zelf wil rekenen aan mijn metingen: de pulsardata staat in I & Q formaat op mijn website www.parac.eu/downloads.htm.
  5. Gratis SDR# en drivers zijn hier te downloaden www.rtlsdr.org/softwarewindows.

Wordt hopelijk vervolgd, Michiel Klaassen.